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ABSTRACT 
 

  Polydimethylsiloxane (PDMS) mechanical properties were measured using custom-built 

compression test device. PDMS elastic modulus can be varied with the elastomer base to the 

curing agent ratio, i.e. by changing the cross-linking density. PDMS samples with different 

crosslink density in terms of their elastic modulus were measured. In this project the PDMS 

samples with the base/curing agent ratio ranging from 5:1 to 20:1 were tested. The elastic 

modulus varied with the amount of the crosslinker, and ranged from 0.8 MPa to 4.44 MPa. The 

compression device was modified by adding digital displacement gauges to measure the lateral 

strain of the sample, which allowed obtaining the true stress-strain data. Since the unloading 

behavior was different than the loading behavior of the viscoelastic PDMS, it was utilized to 

asses viscoelastic properties of the polymer. The thesis describes a simple method for measuring 

mechanical properties of soft polymeric materials.
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CHAPTER 1: INTRODUCTION TO MECHANICAL PROPERTIES OF  
 

POLYDIMETHYLSILOXANE 
 

Polydimethylsiloxane (PDMS) belongs to an important group of polymeric compounds 

that have a wide range of commercial and industrial applications, and are also known as 

silicones. Hybrid-glass and PDMS-based polymers are used in different areas ranging from 

optoelectronics, medicine and cosmetics, surfactants and industrial cleaning agents, soft 

lithography, encapsulating biomaterials and others. As of recently, the material is being actively 

researched as a substrate carrier for long term neural implants because of the unusual mechanical 

and electrical properties that it possesses [1, 2]. Many of these properties are common to the 

polymers family, while some interesting properties are unique to the PDMS group. In the next 

section properties of polymers in general, in particular, their mechanical properties, and their 

measurements, are discussed. 

1.1 Mechanical Properties of Polymers 

Polymers are essentially large molecules, either natural or synthetic, created through 

carbon bonds and repeated units that are either organic or inorganic in nature [3, 4]. Polymers are 

typically synthesized using intermolecular reactions between molecules with at least two 

functional groups. The functional groups, such as a strong nucleophile and an alkyl halide react 

with each other to give rise to a product, which then reacts with a third functional group. The 

reaction products in turn react with a fourth functional group, and so on [2-4]. Synthetic 

polymers are usually synthesized from smaller molecules called monomers, which are added 
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successively using ester and amide bonds. Properties of polymers can be extensively customized 

by choosing suitable monomers as well as bonding agents.  

The elasto-mechanical properties of polymers are often intermediate between 

corresponding properties of solids and liquids. The reason is that in the solid state polymer 

molecules either form random groups (amorphous state) or regular arrays (crystalline state) that 

are closely packed and do not have large intermolecular gaps or voids. On the other hand, a 

polymer that is in a solution has each molecule surrounded by a large number of solvent 

molecules, thereby giving properties that are more similar to liquids than solids. Most polymers, 

however, have a high degree of polymerization, or a large number of repeating groups, so that 

they have their distinct properties that are common to the polymer family. The mechanical 

properties of polymers are also influenced by the architecture of the molecules, whether they 

consist of linear chains, cross-chains or cross-linked chains [2, 4]. In particular, extensively 

cross-linked polymers might have one single super-molecule in a container: PDMS is an 

example of such a polymer. 

1.2 Modulus of Elasticity 

It would be worthwhile to have a general overview of the elastic modulus, viscoelasticity 

and other mechanical properties of materials before discussing the corresponding properties of 

PDMS. One of the principal characteristics of any material is how it behaves when it is subjected 

to an externally applied force. Under such conditions the material deforms either elastically or 

plastically. The deformation under elastic conditions is reversible in nature and it is linear for 

many materials. Linear deformation usually obeys a relation that is called the Hooke’s law, 

which states that the applied stress is proportional to the strain. The constant of proportionality is 

called the Young’s modulus of the modulus. The relation is:  
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F

A
= E

∆L

L
       or       σ = Eε            (1) 

where σ denotes applied stress, ε represents resulting strain and the proportionality constant E is 

the Young’s modulus of the material, which can also be defined as the ratio of stress to strain. As 

can be observed, stress is expressed as the ratio of applied force (F) to the cross-sectional area 

(A) over which it acts, while strain is defined as the deformation over a unit length [2, 5, 6]. 

From equation (1) it can also be observed that Young’s modulus is directly proportional to the 

stress and is inversely proportional to the strain. The stress and strain in equation (1) may be 

either tensile or compressive. 

A standard test of tensile properties of a material is performed by slowly increasing stress 

on a specimen from zero to the value at which the specimen fractures. The strain at each 

incremental stress value is measured and a stress-strain plot is obtained, as shown in Figure 1. 

 

 

Figure 1 Schematic of a typical stress-strain plot showing behavior of polymeric material at 

different stress levels. Adapted from [6]. 
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 It can be observed from Figure 1 that the stress-strain graph is a straight line, or linear, 

over a substantial portion of the total deformation curve. The point at which linearity breaks 

down and permanent deformation begins is called the yield strength of the material, while the 

point at which the specimen finally ruptures is called its ultimate strength [2, 6]. 

Materials under an applied force deform through three principal mechanisms: by 

transmitting the applied force directly to intermolecular bonds and interatomic interactions; or by 

undergoing substantial shape changes; or by deforming either semi-permanently or permanently. 

The first type of deformation is typical of rigid and crystalline substances, such as bones, 

celluloses and most solids. These are also called Hookean materials because their response is 

mainly governed by the linear part of the stress-strain graph in Figure 1. Crystalline polymers 

also fall in this category. The strain resulting from the applied force for these materials is often 

called the Cauchy strain, εc , and the mode of deformation is said to be elastic. There are other 

modes of deformation, such as shear and bulk deformation. Shear modulus G for an isotropic 

material is expressed in terms of the Young’s modulus, E, and the Poisson’s ratio, ν, as follows: 

G =
E

2(1+ν)
                                  (2) 

The second type of deformation, in which materials undergo substantial shape change 

due to applied force, is typical of non-crystalline polymers and soft biological materials. These 

so-called non-Hookean materials experience a different type of strain, known as the true-strain, 

the Hencky strain, which is expressed as: 

εH = ln (
L0+∆L

L0
) = ln⁡(1 + εC)            (3) 

An important feature of the Hencky strain is that it is an instantaneous measure, so that the 

material does not retain a memory of its strain history. 
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The third type of deformation, which is either permanent or semi-permanent, is exhibited 

by amorphous polymers and many other materials at high stress levels. Polymeric materials 

under these conditions may undergo plastic deformation, also called plasticity or ductility, and 

then experience ductile failure with yield. The yield occurs through plastic deformation and is 

often accompanied by an abrupt reduction in cross-section (necking). The molecules reorient 

themselves in the necked region along preferred orientations, resulting in a sample that is 

actually harder than the initial amorphous material, a phenomenon known as strain hardening. 

Plasticity in materials is probed using tension along one axis. The ductile specimen undergoes a 

sudden transition from a linear elastic loading behavior to plastic flow when the stress reaches 

the yield strength.  In case of the stresses along the three axes, σ1, σ2, σ3, plastic flow starts when 

the equivalent stress ͞σ reaches the yield strength and this generalized condition is called the Von 

Mises yield condition. This is shown in Figure 2. 

 

 

Figure 2 Von Mises yield condition for plastic flow in a cylindrical material, whose principal                

axis is parallel to the direction of increasing mean normal stress. Adapted from [6]. 
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1.3 Stress-Strain Behavior of Polymers 

Many polymers exhibit stress-strain behavior that is somewhat similar to solids, but an 

important characteristic of such materials is that their mechanical properties vary with the rate of 

developed strain, as well as temperature. As discussed in the previous section, deformation can 

occur through brittle, plastic or highly elastic routes. The values of the Young’s modulus and 

tensile strength for polymers are much lower than metals, while some polymers can elongate by 

as much as 1,000% of their original length. In addition, the mechanical properties of many 

polymers change significantly with temperature, from brittle to highly elastic behavior as 

temperature increases. An important characteristic of plastic flow regime in polymers is the 

principle of maximum plastic dissipation. According to this principle, the state of stress actually 

present in a sample for a given plastic strain increase results in an increment of work that is 

either equal to or greater than the work done by the plastic strain increase with any other state of 

stress, within or on the yield surface [2, 7]. This principle gives rise to the associated flow rule, 

which states that each individual plastic strain increase is proportional to the component of an 

outward stress vector acting normal to the yield surface. 

 The Young’s modulus of polymers is highly dependent on their chemistry as well as the 

temperature. The value of E for these materials increases as covalent bonds aligned to the 

loading axis increases, with cross-linked polymers having the Young’s modulus values between 

50 to 100 GPa [7, 8]. This is shown in Figure 3. 
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Figure 3 The Young’s modulus values for a variety of hydrocarbons and polymeric materials as a 

function of the fraction of covalent bonds present in the materials. Adapted from [8]. 

 

 

As the applied temperature is increased, the Young’s modulus value for different types of 

polymers decreases. Amorphous polymers have a random chain arrangement below the glass 

transition temperature, Tg; therefore, their E values decrease slowly as temperature is increased 

to Tg. At the glass transition temperature their molecules can rotate favorably around the single 

bonds, causing a sharp decrease in the E values. Thereafter these materials exhibit a large 

amount of plastic or rubbery deformation, until the melting point, Tm is reached. On the other 

hand polymers with more cross-linking undergo greater chain rotation as temperature is 

increased, thereby having a more stable E value in the region between Tg and Tm. A cross-linked 

polymer, such as PDMS, exhibits greater impact resistance in this region [7-10]. This is shown in 

Figure 4, which compares the dependence of E values on temperature for different types of 

polymers and for the specific compound polystyrene [8].  
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Figure 4 (a) Temperature dependence of E values for different types of polymers – amorphous, 

cross-linked and crystalline; (b) E values and behavior at different temperature zones for 

polystyrene. Adapted from [8]. 
 

 

1.4 Viscoelasticity of Polymers 

 Polymers deform elastically at lower temperatures and like a viscous liquid at higher 

temperatures, but at intermediate temperatures they exhibit a behavior that is similar to a rubbery 

solid, known as viscoelastic deformation. This is a very important property for polymers and 

most biological materials because they possess cross-linked crystalline structures that are more 

or less viscoelastic in nature [9]. Viscoelasticity is defined as the response of a fluid or solid, 

which is a combination of viscous and elastic behavior, as determined by the rate of deformation 

relative to the relaxation time of the material. It can be both linear and non-linear, but linear 

viscosity is an especially useful study area for many engineering applications of polymers and 

composite substances [9, 10]. PDMS is a semi-crystalline thermoplastic, implying that it can be 

repeatedly softened by the application of heat and solidified by removal of heat. The storage (E′) 

and loss modulus (E′′) in viscoelastic materials measure the stored energy, representing the 

elastic portion, and the energy dissipated as heat, representing the viscous portion [11, 12]. 

E′ =
σ0

ε0
cosδ              (4) 
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E′′ =
σ0

ε0
sinδ               (5) 

σ and ε denote dynamic stress and strain, and they defined as follows: 

σ = σ0sin⁡(tw + δ)             (6) 

ε = ε0sin⁡(tw)               (7) 

δ is the phase lag between the stress and the strain, t is time. Time is usually described as a rate 

specified by the frequency: w=2пf [11, 12]. 

Viscosity, η, of a Newtonian fluid is mathematically expressed as the ratio of shearing 

stress to the strain rate: 

η =
F/A

dε/dt
            (8) 

 The shear modulus, G, defined in equation (2) earlier, can also be expressed in a similar 

manner: 

G =
τ

γ
=

F/A

∆x⁡A
            (9)  

 On the other hand, viscoelastic behavior implies that polymeric fluids can behave like an 

elastic solid under some conditions and like a viscous fluid under other conditions. The primary 

difference between elastic and viscoelastic deformation is that in case of the latter there is a time-

dependent deformation of the material, at least part of which is recoverable subsequently. 

Viscoelastic behavior can be modeled using a spring and a dashpot (or a motion damper) in 

series (also called the Maxwell model), or parallel (also called the Voigt model), or a 

combination of the two, as shown in Figure 5. 
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(a)                                 (b)                                           (c) 

Figure 5 Modeling viscoelastic behavior using a spring and a dashpot: (a) in series (Maxwell), or 

(b) parallel (Voigt), or (c) in combination (standard linear solid). Released into public domain by 

Pekaje, 2007 [13].  

  

The change in length of an elastic (Hookean) spring having a spring constant E under a 

constant force F is given by 

εS = F/E             (10) 

while the change in length of a viscous (Newtonian) dashpot, having a dashpot constant η under 

a constant force F, is given by 

dεD

dt
= F/η⁡            (11)  

 If there is a sudden application of a constant force F at time t = 0, the immediate response 

of the spring is given by equation (6), but the time-dependent response of the dashpot is given 

byεDt = FDt/η. The overall response for a series arrangement (Maxwell model) is given by 

ε = εs + εD = F/E + Ft/η          (12) 

 In this case, the strain rate is constant and the viscous strain is not recovered if the force 

is removed. In case of a parallel arrangement (Voigt model), the overall response is given by 

ε = εs= εd = ε∞[1 − exp⁡(−t/τ)]        (13) 

where ε∞ represents elongation of the spring at infinite time when it carries all the applied force, 

and τ represents a relaxation time defined as the ratio of the dashpot and the spring constants, so 
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that τ = η/E. In case of a series and parallel combination, the forces applied are F = F1 =F2 + Fd 

(force F is applied at t = 0), while the elongations are εv = ε2 and ε = ε1 = ε2. The overall response 

is given by  

ε = ε∞ − (ε∞ − ε0)exp⁡(−t/τs)                   (14) 

where ε0 represents the initial or unrelaxed expansion of the spring and τs is defined as the 

relaxation time required for strain relaxation, so that τs = η/E2. The stress and strain relaxations 

corresponding to the three models are shown in Figure 6. 

 
 

 

Figure 6 Stress relaxation for the Maxwell model; (a) with stress decaying to zero; (b) strain 

relaxation for the Voigt model, with strain saturating at 𝜀∞; and (c) strain relaxation for the 

standard linear solid model, with strain saturating at 𝜀∞ . Adapted from [8].  
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It has been found that the elongation of polymers under constant applied force is most 

closely simulated by the combined model. Sometimes better results are also obtained by using a 

number of Maxwell and Voigt models, but not combining them into a single simple-parallel 

configuration, so that different number of models yield different time characteristics that are 

similar to the actual polymer behavior [8]. One such combination is called the “standard linear 

solid”, which essentially consists of an elastic spring placed in parallel to the Maxwell model. 

The advantage of this configuration is that it retains a rubbery stiffness after the dashpot in the 

Maxwell model has expanded and the stresses have relaxed, thus providing a close simulation of 

the behavior of an actual polymer [8-10]. The time-dependent stress-strain relationship 

corresponding to both creep and stress relaxation is given by 

σ +
η

Em

∂σ

∂t
= Evε(t) +

η(Ev+Em)

Em

dε

dt
          (15) 

The standard linear solid configuration can effectively model both the stress relaxation 

exhibited by a viscoelastic polymer and its creep behavior that results in permanent deformation 

under a constant stress over time [15]. Another combination model often used to study creep is 

the four parameter Burger’s model, in which a Voigt model is used in series with a spring and a 

dashpot [17]. The strain ε is expressed as a sum of the elastic strain, viscous (creep) and 

viscoelastic strains: 

ε = εelastic + εviscous + εviscoelastic          (16) 

The strain is calculated in terms of properties of springs and dashpots as follows: 

ε =
σ

Em
+

σt

ηm
+

σ

Ev
(1 − e−t/τ)          (17) 

where Em and Ev represent the modulus of elasticity of the two springs and ηv represents the 

viscosity of the dashpot.  
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1.5 Structure, Properties and Uses of PDMS 

 Polydimethylsiloxane (PDMS) is a highly cross-linked semi-crystalline thermoplastic 

material. It is unique among polymers because it has a silicon-oxygen backbone instead of a 

carbon backbone, which is more commonly found. Because of this it has a lower glass transition 

temperature of -125 oC, which in turn makes it less temperature sensitive than other rubber like 

polymers. It is used in membrane oxygenators because of its high oxygen permeability. It is 

highly flexible and biologically stable, which is why it is often used in sensitive medical 

equipment, such as catheter and drainage tubing, and in insulation for pacemakers. It is also used 

in prostheses, such as finger joints, blood vessels, heart valves and other implants [16]. 

Commercially available PDMS is known by various names, including Siloxanes, Silicone fluids, 

Dimethicone and E900. It is manufactured commercially by carrying out a reaction between 

elementary silicon and methyl chloride, CH3Cl. The reaction yields dimethyl dichlorosilane, 

Si(CH3)2Cl2, which is distilled and hydrolyzed to form linear siloxanes and is further 

polymerized. Smaller molecular weight siloxanes are removed by thermal treatment, or through 

solvent extraction [17]. 

 Physically, it is a clear odorless liquid with very low vapor pressure with properties that 

are marginally dependent on its degree of polymerization (which in turn determines its 

viscosity). It has a chemical formula of (C2H6OSi)n with n representing the number of repeated 

units, and its molecular structure is shown in Figure 7. 
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Figure 7 Molecular structure of PDMS [18]. 

 

It can be observed in Figure 7 that PDMS has an inorganic backbone with organic groups 

as pendants, so it is classified as a “semi-inorganic” or “organic-inorganic” polymer. PDMS and 

silica composites have a fairly high impact strength, which determines the ability of a material to 

withstand a sudden fracturing force. The use of standard impact tests, such as the Charpy 

pendulum and the falling weight impact tests on PDMS composites have led to the conclusion 

that impact strength increases as the percentage of PDMS in a composite increases. This is 

because the siloxane component behaves as an elastomer due to its glass transition temperature 

being much lower than room temperature. It can absorb large quantities of energy during an 

impact test, resulting in delayed development of cracks and fractures [2, 19]. Although bulk 

PDMS has relatively low thermal conductivity of 0.15 W/mK, it has recently been noticed that 

single or double polyethylene chains that constitute amorphous or crystalline PDMS display 

higher conductivity values of 7 W/mK. This finding may lead to wider use of the material as a 

thermal grease [20]. 

 The surface properties of PDMS and composite polymers have been of particular interest 

for quite some time due to the wide applications areas of these materials. Many of these 

applications are due to useful characteristics of PDMS, such as low intermolecular forces 

between and compact sizes of the pendant methyl groups, high flexibility and bond energy of the 
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siloxane backbone, and the partial ionic nature of the siloxane bond [21]. PDMS in the solid state 

has a hydrophobic surface, so a solid sample of the material does not swell in the presence of 

water or alcohol-based solvents. However, some organic solvents can diffuse into the samples 

and cause swelling. On the other hand, treatment of the surface by air or argon plasma adds 

silanol groups and thereby renders the sample surface hydrophilic. This allows PDMS to be used 

in a number of microfluidic applications, such as forming patterned nanoparticle arrays and 

optoelectronic packages. Another popular method of increasing surface hydrophilicity is ultra-

violet ozone (UVO) treatment, in which short wavelength UV rays and atomic oxygen are used 

to form volatile organic molecules that desorb from the sample surface [21, 22]. Longer duration 

UVO treatment (5-10 minutes) is used to deposit hard silica-like layers of 5 nm approximate 

thickness on the surface of the polymer. It also leads to changes in mechanical properties of 

PDMS due to the densification of cross-linked silicone elastomer networks at or near the surface. 

Dynamic mechanical thermal analysis (DMTA) and nanoindentation techniques have been used 

to determine changes in elastic modulus as a function of UVO treatment time of PDMS samples. 

It has been found that the storage modulus remains constant but the elastic modulus increases by 

a small amount as treatment time is increased [21]. This is shown in Figure 8. 
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Figure 8 (a) Changes in bulk storage modulus and (b) surface reduced elastic modulus of PDMS 

and another polymer, PVMS, as a function of time with UVO treatment. Red squares represent 

PDMS while blue circles represent PVMS (poly vinyl methyl siloxane). Adapted from [21]. 
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CHAPTER 2: PDMS SYNTHESIS AND MECHANICAL CHARACTERIZATION 

 

The synthesis routes and properties of PDMS and related composite polymer materials 

have been researched by investigators for quite some time, and a wide variety of characterization 

techniques have been employed so far. 

2.1 Synthesis and Characterization of PDMS 

 The possibility of using polyurethanes based on PDMS and mono methoxypolyethylene 

glycol (MPEG) as polymeric biomaterial for coatings was investigated by Park et al. [23]. The 

authors used commercially available PDMS and ethylene glycol as base materials to prepare 

MPEG grafted polyurethane (PU) sheets utilizing a two-step condensation reaction. The resulting 

polymers were characterized using attenuated total reflectance infrared spectroscopy, proton 

nuclear magnetic resonance (H-NMR), gel permeation chromatography, and other techniques. 

Results indicated that the PDMS phase grafted onto the PU substrate to create soft and hard 

segments of polymers, but there was a good degree of phase separation, since hydrogen bonding 

between carbonyl and N-H groups in PU occurred only in the hard segment [22, 23]. The authors 

also observed that the surface molecules were oriented in such a manner that interfacial energy 

between the polymer and air, or water, was minimized. This resulted in the commonly observed 

hydrophobic surface, especially in the absence of surface impurities and rough surfaces. Because 

of the process, the advancing effect of PDMS-based polymers were observed to be high [23]. 
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2.2 Mechanical Properties of PDMS under Linear Expansion 

 PDMS was used as an impact modifier for epoxy resins and the resultant mechanical 

properties of the polymer networks were investigated by Hanoosh & Abdelrazaq [24]. The 

reason they chose epoxy resins as the substrate was that this group of toughened thermoset resins 

are particularly useful in the manufacture of composite fiber reinforced plastic materials. The 

resins is, however, brittle in nature and require modifiers, such as carboxyl terminated poly 

butadiene co-acrylonitrile or PDMS. The elastomer was prepared by cross-linking hydroxyl 

terminated polydimethylsiloxane with tetraethyl orthosilicate with tin (II) 2-ethylhexanoate 

acting as one of the catalysts. Samples were characterized using Fourier transform infrared 

spectroscopy and H-NMR, while mechanical properties were assessed using tensile, flexural and 

compressive testing as well as dynamic mechanical analysis [24]. The authors observed that 

increasing the ratio of PDMS in the epoxy resin led to increased toughness of the final product, 

with elongation increasing from 22% to 39% as PDMS content increased from 0% to 20%. On 

the other hand, values of the ultimate compression strength and ultimate tensile strength both 

decreased as PDMS content increased. In addition, storage and loss moduli were both found to 

decrease, both as a function of temperature and as a function of PDMS content [2, 24]. The 

authors found that all the epoxy resin specimens transitioned from stiff and hard solids to pliable 

polymers as temperature increased, signaling decreases in their storage moduli. Based on their 

results the authors concluded that the optimum toughness level of the composite occurred at 5% 

PDMS content. 

 Mechanical and rheological properties of PDMS materials for application as micro 

electromechanical systems (MEMS) packages was also investigated by Schneider et al. [25]. 

PDMS is used as a cast to embed electronic components and increase their operational lifetime, 
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so the authors were interested in determining these properties with a view to designing improved 

microcircuits. They used a cone plate viscometer to measure shear-dependent viscosity of two 

commercially available PDMS samples, Sylgard 184 and RTV 615 [25]. The instrument used by 

them measured viscosity as functions of torque and cone positions, with the applied rotational 

frequency determining the cone’s moment of inertia. Both silicone elastomers showed very 

similar viscosity properties of viscosities at shear rates between 0.01 s-1 and 30 s-1 at room 

temperature. It was also observed that the samples behaved as Newtonian fluids, with viscosity 

values being independent of the shear rate. Hardening of the materials was investigated by 

applying a uniform shear rate of 30 s-1 and measuring the viscosity over time. The authors found 

that Sylgard 184 underwent a faster hardening process at 60 oC compared to RTV 615 – the 

viscosity of the former increased by 8% and of the latter by 5.5% during a 15 minutes 

observation interval. These results are shown in Figure 9. 

 

 

(a)                                                                 (b) 

Figure 9 Viscosity of two commercially available PDMS samples: (a) as function of the shear 

rate and (b) the curing time. The graph (a) shows an irregular curve because measurements were 

performed continuously. Adapted from [25].  

  



 

20 
 

The authors also determined the constant elastic moduli of the two materials over a large 

strain range, up to 115%. The tests were performed with rectangular samples with a high length 

to width ratio of 20 in order to reduce the effects of clamping in the tensile testing apparatus. A 

constant strain rate of 0.1 mm/sec was used to pull one end of the sample with the resulting force 

was recorded. The derivative of the resulting stress-strain curve was used to calculate the 

modulus of elasticity, E. For both tested elastomers the authors obtained curves that were linear 

up to 45% strain, yielding E values of 1.76 MPa for Sylgard 184 and 1.54 MPa for RTV 615 

[25]. Beyond the linear region the E values of both materials increased non-linearly up to 92-

97% strain and thereafter the E values decreased. The results, however, had high standard 

deviation because of errors introduced by the clamping mechanism of the apparatus. The stress-

strain diagrams and E values for both materials are shown in Figure 10. 

 

 

Figure 10 (a) Stress-strain curves for two types of PDMS; (b) resulting elastic moduli curves 

show an initial linear region. This is followed by increasing and then decreasing E value regions. 

Adapted from [25].  
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While the above results were obtained for high strain values, the mechanical properties of 

the elastomers were also obtained for lower strain values up to 45%. Tensile tests were carried 

out to determine tear strength, tensile strength, strain at break and stress values using test bars 

prepared in accordance with the DIN 53504 standard [26]. The mold used to prepare the samples 

and the testing apparatus are shown in Figure 11.  

 

 

 

Figure 11 (a) Casting mold for preparing test samples, (b) schematic diagram of a sample and (c) 

testing apparatus used for determining mechanical properties of two types of PDMS materials at 

strains. Adapted from [26]. 
 

 The authors found that the addition of a thinner (which reduced the viscosity of the 

sample bars) at different concentrations significantly affected the sample mechanical properties. 

Elastic moduli of all samples tested decreased as thinner concentration was increased from 0% to 

10%, while the elastic modulus of a sample at a given thinner concentration was found to be 
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linearly dependent on temperature. The authors found that this dependence closely followed the 

relation 

E =
2

3
kTρk            (18) 

where k denotes the Boltzmann’s constant, T denotes absolute temperature and ρk denotes the 

degree of cross-linking present in the PDMS sample. In addition to establishing temperature 

dependence, the authors also found that the viscoelastic properties of the elastomers were 

dependent on the strain rate. They measured a 2% increase in elastic modulus for Sylgard 184 

when the applied strain rate was within 0.0025/s to 0.1/s range. The creep properties were 

measured using the Burger’s model described by equations (12) and (13). It was found that creep 

increased as thinner content was increased, with the strain increasing due to increasing viscous 

and viscoelastic creep parameters. However, the authors were not able to find a systematic 

relation for variations in the time constant of equation (13). The strain time diagram illustrating 

increasing strain values for higher thinner content is shown in Figure 12. 

 

 

Figure 12 Strain-time relationship for a PDMS sample at constant temperature (23 oC) and 

constant stress value (3.125 N/mm2). Adapted from [26].  
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2.3 Mechanical Properties of PDMS under Non-Linear Expansion 

The papers reviewed so far concentrated mainly on the mechanical properties of different 

types of PDMS in their linear extension regions. Different mechanical properties of PDMS in the 

non-linear region were investigated by Kim, Kim, & Jeong [27]. The purpose of their 

investigations was that while PDMS materials are used in a wide variety of devices, including 

optoelectronic packaging, microfluidic devices and critical medical equipment, there are almost 

no literature reports on the behavior of these materials under nonlinear conditions that involve 

stress softening and residual strains [27]. The authors also considered the fact, illustrated in the 

two previous papers reviewed in this section, which mechanical properties of PDMS depend on 

the ratio of the pure polymer and thinners, or the curing agents used. This dependency was 

earlier explained by Unger et al. as being a result of structural or covalent bonding that occurs 

between more flexible vinyl PDMS and more rigid Silicon-Hydride (Si-H) based PDMS sections 

[27, 28].  

Kim et al. performed one-time failure tension tests, as well as cyclic fixed strain tests and 

used three non-linear models (Neo-Hookean, Mooney-Rivlin and Ogden) to simulate mechanical 

properties from their obtained stress-strain curves. The tests were carried out on bar shaped 

samples prepared from three variants of Sylgard 184. They found that the use of 5% curing agent 

(designated as PDMS-05) did not change stress values at 50% cyclic strain levels, but introduced 

hysteresis of the material at 100% cyclic strain. In addition, the stress was found to decrease after 

several loading-unloading cycles were carried out. The magnitude of decrease was found to be 

highest after the 1st and 2nd cycles, after which it became less – the magnitude was also found to 

be the higher in the higher strain region. Somewhat similar results were obtained at 10% and 

15% concentration levels (designated as PDMS-10 and PDMS-15, respectively). However, 
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increasing curing agent levels resulted in increased yield stress at low strain levels. From these 

observations the authors concluded that both hysteresis and yield stress values can be controlled 

by increasing polymer content or decreasing the curing agent content. Evaluating the three non-

linear models, the authors found that the 2nd order Ogden model came closest to predicting the 

non-linear portion of the stress-strain curves. This model was also found to simulate the increase 

in bulk modulus of the samples as curing agent concentration was increased [27]. Material 

properties obtained by the authors for different ratios of polymer and curing agent (designated as 

PDMS-AB) are shown in Table 1. 

 

Table 1 Material constant values for different ratios of polymer and curing agent (PDMS-AB) 

using three non-linear models. Adapted from [27]. 

 

Material Model Material Constants 
PDMS-AB (Base Polymer: Curing Agent) 

5% 10% 15% 

Neo-Hookean C10 (MPa) 0.209 0.0705 0.093 

Mooney-Rivlin C10 (MPa) 0 0.0308 0.0014 

C01 (MPa) 0.1342 0 0.088 

C11 (MPa) 0.0889 0.027 0.011 

Ogden μ1 (MPa) 0.00034 63.49 0.244 

μ2 (MPa) 0.1316 0.041103 0.0146 

α1 7.8 6.371E-10 1.018 

α2 3.67 3.81166 3.74 

Bulk Modulus (MPa) 1,214 962 739 

 

While the introduction of curing agents and thinner materials is an important way of 

controlling PDMS properties, tensile testing of the soft material is rather challenging because of 

a non-standard region at the beginning of the strain-strain curve. This is often caused by a 

misalignment between the sample and the testing apparatus when measurements have to be taken 

not on the sample itself, but between the grips of the tensile testing machine. This issue was 
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discussed by Wang, et al. while evaluating different compression and nano-indentation test 

methods suitable for soft materials. The authors used a specially designed compression testing 

machine in which the softer samples could be tested in accordance with the ASTM standards 

[29]. The test apparatus used by the authors is shown in Figure 13. 

 

 

Figure 13 Custom test apparatus for determining mechanical properties of PDMS with different 

amount of cross-linking. Adapted from [29]. 

 

The samples were prepared by taking mixtures with varying ratios of the polymer and the 

curing agent, and the mixtures were poured into a flat bottomed polystyrene dish followed by 

degassing and curing at 65 oC. As already discussed in this literature review, it was observed that 

the elastic moduli of the samples decreased as polymer content increased. For example the E 

values of 4 mm diameter samples decreased from 3.6 MPa to 0.5 MPa as the polymer to curing 

agent ratio changed from 5:1 to 33:1. The rate of decrease was found to be almost linear and the 

authors developed an empirical relation to express elastic modulus E in terms of the PDMS to 
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curing agent weight ratio, n, as follows: 

E = 
20MPa

n
            (19) 

The authors also found that higher amounts of the cross-linker stiffened the PDMS 

network, but the E value decreased thereafter as most cross-link sites became saturated and the 

curing agent created gaps in the network [2, 29]. 

2.4 Viscoelasticity Measurements Using Compression Testing 

Material properties of PDMS samples have been investigated using a variety of 

compression and nanoindentation tests and the results have been reported in the literature. The 

nanoindentation technique has been found to be particularly useful for finding the elastic moduli 

of soft samples, especially those having low curing agent quantities with E values less than 1 

MPa. 

 One of the early papers discussing the elastic modulus value of PDMS and other 

polymers found using nanoindentation was by White et al. [30]. They found that rheological 

properties were similar at macro and micro scales when the degree of crosslinking was greater, 

or the material was stiffer. However, properties were different in case of Sylgard 184 samples 

with an elastomer to curing agent ratio of 10:1, which made the sample more compliant [2, 29, 

30].  

 Mechanical properties of PDMS were determined using the Maxwell model under 

uniaxial compression, dynamic mechanical analysis, and nanoindentation by Lin et al [31]. The 

authors carried out viscoelastic characterization and finite element analysis (FEA) of the three 

types of samples – bulk, films and micro-pillar arrays. The first two types of samples underwent 

punch and dynamic mechanical analysis (DMA) tests, while the arrays underwent 

nanoindentation to find out bending forces for individual micro-pillars. The authors obtained 
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loading-deformation curves in order to calculate the Young’s modulus, stress-relaxation testing 

curves, and viscoelasticity values of the bulk and film samples using both flat punch test and 

Dynamic Mechanical Analysis (DMA) [31]. The complex moduli of the bulk samples were 

obtained using a viscoelastic FEA model and by applying a cylindrical load at different 

frequencies. Storage and loss moduli at different samples stiffness were obtained. Sample 

properties at the micro level were obtained by controlling both the deformation and reaction 

forces during nano-indentation. Both experimental and simulated stress-relaxation curves were 

plotted. Some of the results obtained by the authors are shown in Figure 14. 

 

 

 

 

Figure 14 (a, b) Experimental and simulated curves showing load-deflection results and stress-

relaxation results during punch test of PDMS samples; (c) Bulk storage and loss moduli at 

different loading frequencies under compression testing; and (d) Bulk stiffness values at different 

frequencies under cylindrical loading. Simulated and actual values almost coincide for the tests. 

Adapted from [31].  
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         (c)                                                                    (d) 

Figure 14 (Continued) 

 

 Based on results from all three tests, the authors concluded that PDMS can be best 

characterized as a Maxwell material, especially at the micro-pillar level, which has both elastic 

and viscous properties. Therefore, the behavior of the material can be adequately simulated using 

the Maxwell model.  

 Berkovich and flat punch tips were also used by Wang et al. in order to determine the 

elastic moduli of PDMS samples having different curing agent concentrations. They observed 

that the quasi-static Berkovich test has to be compensated for tip pull-in effects, and after 

suitable adjustments yields an E value of 1.5 MPa for a sample with a 5:1 ratio of elastomer to 

curing agent. They also found that the unloading stiffness value if higher, with a dynamic testing 

regime yielding a value of 3.6 MPa for the same sample [32]. 

 To conclude this literature review, it can be stated that elastic modulus and other 

mechanical properties of PDMS depend on the extent of cross-linking (as determined by the 

presence of the curing agent).  
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CHAPTER 3: PDMS MACROSCOPIC COMPRESSION TESTING 

 

3.1 Samples Preparation and Equipment Setup 

3.1.1 Samples Preparation 

The most common way to produce different base curing agent ratio PDMS is by using 

Sylgard 184 silicone elastomer base and Sylgard 184 silicone elastomer curing agent [2, 33-36]. 

Therefore, some fundamental lab materials and supplies, such as Petri dishes, spoons, cups, 

vacuum desiccator, gloves, weighing instrument, and hot plate are used for preparing various 

base curing agent ratio of polydimethylsiloxane (PDMS) samples. First of all, Sylgard 184 

silicone elastomer base is placed in a cup, to determine how many grams are needed of the 

Sylgard 184 silicone elastomer curing agent. For instance, in the beginning of the experiment if 

one uses 20 g of Sylgard 184 silicone elastomer base, for making PDMS 10:1, 2 g of Sylgard 184 

silicone elastomer curing agent are needed, or 4 g of the Sylgard 184 silicone elastomer curing 

agent are required for producing PDMS 5:1. Then, Sylgard 184 silicone elastomer curing agent is 

poured into the same cup and stirred until the air bubbles are not visible, and the texture becomes 

milky (approximately 8 to 10 minutes) [2, 33]. As shown in Figure 15, the air bubbles affect 

PDMS mechanical and surface properties, causing several problems with the devices, like Bio-

MEMS and microfluidic devices. Hence, the goal is to minimize and remove as many bubbles as 

possible. Therefore, the most sustainable method to remove the bubbles is desiccator connected 

to a vacuum line [37]. 
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Figure 15 PDMS base is mixed with curing agent and after it is stirred, air bubbles begin to 

appear. 

 

Then the polydimethylsiloxane mixture is placed in the desiccator under vacuum until no 

bubbles appear (about 20 to 30 min), making sure that the PDMS mixture does not foam out of 

the container [2, 33]. Finally, PDMS is poured over a Petri dish and placed on a hot plate at 150 

°F (~65 °C), and let the polydimethylsiloxane network cure for half  a day [2, 33].  

 According to the ASTM D1229 – 03 Standard Test Method for Rubber Property-

Compression Set at Low Temperatures and ASTM Mechanical Testing and Evaluation, the 

aspect ratio (diameter/length) for soft materials and polymer samples should be more than 0.5 for 

the compression test [2, 35-37]. Punches which different diameters (
1

8
″, ⁡

3

32
″, and 

2

16
″) were used 

to make cylindrical polydimethylsiloxane samples. Figure 16 clearly shows the various sizes of 

PDMS network samples. Electronic indicator and micrometer calipers were used for measuring 

the length and diameter of the PDMS samples [2]. 
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Figure 16 Cylindrical PDMS network samples for compression tests. Adapted from [2]. 

 

3.1.2 Compression Test Equipment Setup  

PDMS is a soft polymeric material. Hence, simple electronic displacement indicators and 

displacement gauges are more suitable devices for measuring PDMS samples length changing 

during the compression test [2]. Mitutoyo electronic absolute digital indicator ID-C Series 543-

263B and Anytime Tooling digital electronic indicator dial gauges were used in this project. 

Both of these digital indicators provide easy reading of the data and high accuracy. Also, they 

can display both inch and metric scales, with the corresponding resolution of 0.00005" and 

0.001mm [39, 40].  

The compression device was modified by adding digital displacement gauges to measure 

the lateral strain of the sample, which allowed the true stress-strain data to be obtained. Figure 17 

indicates the experimental setup of the electronic gauge indicators. 
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Figure 17 PDMS compression test setup. 

 

For determining the Poisson’s ratio of PDMS, different sample were tested and Table 2 

lists compression test results.  

Table 2 Macroscopic compression tests results for PDMS Poisson’s ratio 

PDMS 10:1 Poisson’s Ratio 

Sample 1 0.433 

Sample 2 0.444 

Sample 3 0.438 

Sample4 0.427 

Sample5 0.404 

Sample6 0.382 

Average 0.421 

 

Although PDMS theoretical Poisson’s ratio is about 0.5, experimental Poisson’s ratio is 

0.42, which proves that the samples are different form each other. As a result, the experiment 

shows that electronic gauges have a friction. Therefore, preloading and gravity reduce the 

friction of vertical electronic gauge [2]. Hence, one vertical electronic indicator gauge can be 
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enough to determine elastic modulus of PDMS samples. The final compression setup for 

measuring elastic modulus is shown in the Figure 18. 

 

Figure 18 PDMS compression setup for measuring elastic modulus [2]. 

 

3.2 PDMS Elastic Modulus Experimental Test Results 

First of all, sample diameter and length can be measured by electronic indicator or digital 

displacement gauge. When determining the diameter, both stress and cross-sectional areas are 

found. Chapter 1 mentions how elastic modulus can be found theoretically, which represents 

fundamental formulas for the elastic modulus. For an ideal elastic solid, the Hooke’s law 

expresses the Young’s modulus or Elastic modulus, E as:  

      E= 
σ

ε
 ;   σ = 

F

A
=

mg

πr2
  and   ε = 

Δl

l
                 (20) 

Here, σ is the stress, ε is the strain, g is gravity ~ 9,81 m/s2, m is the loading weight, r is radius of 

the sample and the l is the original length of the sample. Engineering stress and strain can be 

determined with the compression test [2]. 

The sample has to be in full contact with the gauge and also without enough preload 

before the compression test, the elastic modulus of sample will be smaller than its true value [2].  

Hence, there is a need to apply preloading, in order for the compression test to give accurate 
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values. As an example, let’s consider PDMS 10:1 sample. Figure 19 demonstrates how 

preloading affects the experimental results. Elastic modulus is approximately 3 MPa and the data 

is linear, when doing the experiment with preloading. On the other hand, without preloading, the 

elastic modulus is 2 MPa and data is non-linear. Furthermore, PDMS may deform under the 

heavy weight loading, so one needs to determine applicable weight for preloading. Preloading 

may change for different samples, diameter and length. In this project, if samples’ diameter is 

larger than 2.5 mm, the weight that needs to be applied for preloading is 50 g, if samples’ 

diameter is smaller than 2.5 mm, it is 30 g.  

 

Figure 19 Comparison of preloading with no preloading on the same sample. 

 

After the preloading is applied and the sample is fully contacted with the granite stage 

and the electronic gauge, the electronic gauge will be set to zero and then, the compression test 

will start [2].  
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SPSS, which is one of the most popular programs for analyzing data, and Excel were 

used to evaluate experimental data, such as drawing histograms, matching with normal 

distribution, and also finding standard derivation, mean, median, and mode of the data. The 

following pages demonstrate compression tests results for PDMS 5:1, PDMS 10:1, and PDMS 

20:1 and their SPSS analysis results. 

3.2.1 Macroscopic Test for Determining PDMS 5:1 Elastic Modulus 

For determining the elastic modulus of PDMS 5:1, 48 different samples were tested and 

Table 3 lists compression test results. 
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Table 3 Macroscopic compression tests results for different samples of PDMS 5:1 

Sample 

# 

Diameter 

(mm) 

Length 

(mm) 
Δl Load (g) Area (m2) Force (N) 

Stress, σ 

(MPa) 
Strain (ε) d/l 

Elastic Modulus 

(MPa) 

1 2.7 2.78 0.15 100 5.73E-06 0.981 0.171 0.0525 0.971223 3.262 

2 2.7 3.55 0.19 100 5.73E-06 0.981 0.171 0.05352 0.760563 3.201 

3 3.8 3.51 0.11 100 1.13E-05 0.981 0.0865 0.03019 1.082621 2.864 

4 3.8 2.88 0.09 100 1.13E-05 0.981 0.0865 0.03125 1.319444 2.789 

5 1.77 2.46 0.24 100 2.46E-06 0.981 0.398 0.0992 0.719512 4.0196 

6 1.77 2 0.14 50 2.46E-06 0.4905 0.199 0.072 0.885 2.768 

7 1.77 1.77 0.12 50 2.46E-06 0.4905 0.199 0.06553 1 3.0417 

8 3.82 3.01 0.12 100 1.15E-05 0.981 0.0856 0.04053 1.269103 2.112 

9 3.82 3.03 0.11 100 1.15E-05 0.981 0.0856 0.03762 1.260726 2.275 

10 2.9 3.18 0.16 100 6.61E-06 0.981 0.149 0.04905 0.91195 3.0275 

11 2.94 2.65 0.12 100 6.79E-06 0.981 0.145 0.04603 1.109434 3.1388 

12 1.84 1.87 0.11 50 2.66E-06 0.4905 0.185 0.06096 0.983957 3.0258 

13 1.84 2 0.12 50 2.66E-06 0.4905 0.185 0.059 0.92 3.126 

14 2.86 3.13 0.13 100 6.42E-06 0.981 0.153 0.04025 0.913738 3.7933 

15 2.86 2.84 0.12 100 6.42E-06 0.981 0.153 0.0436 1.007042 3.4974 

16 2.8 3.16 0.13 100 6.16E-06 0.981 0.159 0.0424 0.886076 3.757 

17 2.83 2.75 0.12 100 6.29E-06 0.981 0.156 0.04363 1.029091 3.574 

18 1.7 2.41 0.14 50 2.27E-06 0.4905 0.216 0.05892 0.705394 3.6675 

19 1.73 2.3 0.13 50 2.35E-06 0.4905 0.209 0.05826 0.752174 3.5816 

20 1.84 2.43 0.13 50 2.66E-06 0.4905 0.184 0.05514 0.757202 3.3451 

21 1.82 2.62 0.14 50 2.60E-06 0.4905 0.189 0.0519 0.694657 3.6322 

22 1.82 1.67 0.14 50 2.60E-06 0.4905 0.189 0.08263 1.08982 2.2816 

23 3.57 3.02 0.09 100 1.00E-05 0.981 0.098 0.03112 1.182119 3.14863 

24 2.81 3.34 0.17 100 6.20E-06 0.981 0.158 0.05209 0.841317 3.0364 

25 3.78 2.62 0.08 100 1.12E-05 0.981 0.0876 0.03206 1.442748 2.7266 
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Table 3 (Continued) 

Sample 

# 

Diameter 

(mm) 

Length 

(mm) 
Δl Load (g) Area (m2) Force (N) 

Stress. σ 

(MPa) 
Strain (ε) d/l 

Elastic Modulus 

(MPa) 

26 3.8 3.36 0.09 100 1.13E-05 0.981 0.0865 0.02559 1.130952 3.3795 

27 3.78 3.21 0.08 100 1.12E-05 0.981 0.08741 0.02616 1.17757 3.3405 

28 3.9 2.69 0.06 100 1.19E-05 0.981 0.08212 0.02304 1.449814 3.56296 

29 2.72 3.48 0.19 100 5.81E-06 0.981 0.1689 0.05402 0.781609 3.1251 

30 2.82 2.7 0.17 100 6.25E-06 0.981 0.157 0.0629 1.044444 2.4946 

31 2.8 3.09 0.17 100 6.16E-06 0.981 0.1591 0.05377 0.906149 2.9661 

32 2.78 2.87 0.15 100 6.07E-06 0.981 0.1616 0.05226 0.968641 3.0922 

33 2.8 2.94 0.22 100 6.16E-06 0.981 0.1593 0.07482 0.952381 2.1291 

34 2.83 2.97 0.14 100 6.29E-06 0.981 0.156 0.04848 0.952862 3.2166 

35 2.79 3.66 0.18 100 6.11E-06 0.981 0.16 0.04863 0.762295 3.2994 

36 3.82 2.93 0.13 100 1.15E-05 0.981 0.0856 0.04369 1.303754 1.9593 

37 3.28 3.43 0.17 100 8.45E-06 0.981 0.1161 0.04957 0.956268 2.3424 

38 3.824 2.89 0.18 100 1.15E-05 0.981 0.0854 0.06159 1.323183 1.3868 

39 2.91 2.33 0.12 100 6.65E-06 0.981 0.1475 0.05151 1.248927 2.86396 

40 2.79 2.77 0.19 100 6.11E-06 0.981 0.1605 0.06718 1.00722 2.3896 

41 2.78 2.41 0.09 50 6.07E-06 0.4905 0.08081 0.03734 1.153527 2.16388 

42 1.68 3.3 0.24 50 2.22E-06 0.4905 0.221 0.07273 0.509091 3.0425 

43 1.7 1.87 0.11 50 2.27E-06 0.4905 0.2161 0.0577 0.909091 3.7417 

44 1.79 2.014 0.11 50 2.52E-06 0.4905 0.1949 0.05266 0.888779 3.7033 

45 1.83 2.47 0.14 50 2.63E-06 0.4905 0.1865 0.05829 0.740891 3.1988 

46 1.72 1.76 0.12 50 2.32E-06 0.4905 0.2111 0.06818 0.977273 3.09616 

47 1.66 2.41 0.15 50 2.16E-06 0.4905 0.22665 0.06224 0.688797 3.6413 

48 1.74 1.991 0.16 50 2.38E-06 0.4905 0.2063 0.08086 0.873933 2.55092 
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Figure 20 Distribution of different PDMS 5:1 samples’ elastic modulus 

 

Figure 21 SPSS analyzed result of the elastic modulus of the PDMS 5:1 samples
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Table 4 SPSS analyzed result of the elastic modulus of the PDMS 5:1 samples 

Number of Valid Data 48.00 

Number of Missing Data 0.00 

Mean 3,028,326.78 Pa 

Median 3,110,626.60 Pa 

Mode 1386823.522a Pa 

Mean Standard Error 81,416.7485 

Standard Deviation 564,071.78 Pa 

Range 2,632,730.54 Pa 

Minimum 1,386,823.52 Pa 

Maximum 4,019,554.06 Pa 

a. Multiple modes exist. The smallest value is shown 

From Table 4 and Figure 21, elastic modulus of PDMS 5:1 is 3.03 MPa and standard 

derivation is 0.56 MPa. From SPSS analysis goodness-of-fit tests for normal distribution on 95% 

confidence interval for PDMS 5:1 histogram’s the p value is 0.427, so if p value is greater than α 

level which is 0.05, and gives normal distribution. 

3.2.2 Macroscopic Test for Determining PDMS 10:1 Elastic Modulus 

For determining the elastic modulus of PDMS 10:1, 23 different samples were tested and 

Table 5 indicates compression test results. 
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Table 5 Macroscopic compression tests results for different samples of PDMS 10:1 

Sample 

# 

Diameter 

(mm) 

Length 

(mm) 
Δl Load (g) Area (m2) 

Force 

(N) 

Stress, σ 

(MPa) 
Strain (ε) d/l 

Elastic Modulus 

(MPa) 

1 3.76 2.3 0.094 100 1.11036E-05 0.981 0.08834 0.0409 1.634782 2.1617 

2 3.54 3.25 0.13 100 9.8423E-06 0.981 0.099671 0.04 1.0892309 2.4918 

3 2.744 3.45 0.154 70 5.91368E-06 0.6867 0.1161 0.0446 0.795369 2.6014 

4 3.62 3.36 0.102 70 1.02922E-05 0.6867 0.06672 0.0303 1.0773809 2.19786 

5 3.67 2.08 0.072 70 1.05784E-05 0.6867 0.06491 0.03462 1.7644237 1.8753 

6 2.76 1.876 0.066 70 5.98285E-06 0.6867 0.11478 0.03518 1.4712152 3.2625 

7 2.7 3.324 0.13 70 5.72555E-06 0.6867 0.1199 0.03915 0.8122368 3.06667 

8 2.82 3.01 0.138 70 6.2458E-06 0.6867 0.10994 0.04571 0.9367076 2.3981 

9 2.7 2.67 0.122 70 5.72555E-06 0.6867 0.11992 0.04928 1.0135955 2.62483 

10 2.79 2.77 0.114 70 6.11362E-06 0.6867 0.1123 0.04152 1.0220217 2.7293 

11 2.75 2.11 0.1 70 5.93957E-06 0.6867 0.1156 0.04733 1.3317536 2.4395 

12 2.8 2.75 0.196 70 6.15752E-06 0.6867 0.11153 0.07127 1.0181818 1.5647 

13 2.85 2.35 0.11 70 6.3794E-06 0.6867 0.10767 0.0468 1.2165957 2.29962 

14 2.82 2.69 0.106 70 6.2458E-06 0.6867 0.10997 0.0394 1.0487138 2.79014 

15 2.66 2.76 0.136 70 5.55716E-06 0.6867 0.1236 0.04928 0.9637116 2.5077 

16 1.75 2.71 0.186 50 2.40528E-06 0.4905 0.20394 0.0686 0.6457558 2.97115 

17 1.79 2.43 0.11 50 2.51649E-06 0.4905 0.19491 0.0452 0.7366254 4.30583 

18 1.73 2.21 0.104 50 2.35062E-06 0.4905 0.20864 0.04706 0.782805 4.43421 

19 1.7 2.33 0.188 50 2.2698E-06 0.4905 0.2161 0.08069 0.7296134 2.67823 

20 1.75 1.68 0.086 50 2.40528E-06 0.4905 0.20393 0.0512 1.0416667 3.9837 

21 2.77 3.2 0.16 100 6.02628E-06 0.981 0.1628 0.05 0.8655 3.25574 

22 3.55 3.33 0.1 100 9.89798E-06 0.981 0.09912 0.03003 1.0660066 3.3004 

23 2.8 2.9 0.14 100 6.15752E-06 0.981 0.1593 0.0486 0.9657241 3.30015 
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Figure 22 Distribution of different PDMS 10:1 samples’ elastic modulus 

 

 
Figure 23 SPSS analyzed result of the elastic modulus of PDMS 10:1 samples 
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Table 6 SPSS analyzed result of the elastic modulus of PDMS 10:1 samples 
 

Number of Valid Data 23.00 

Number of Missing Data 0.00 

Mean 2,836,547.19 Pa 

Median 2,678,239.18 Pa 

Mode 1,564,723.93486a Pa 

Mean Standard Error 149,401.07797 Pa 

Std. Deviation 716,502.40 Pa 

Range 2,869,482 Pa 

Minimum 1,564,723.93 Pa 

Maximum 4,434,205.93 Pa 

a. Multiple modes exist. The smallest value is shown 

 

From Table 6 and Figure 23, elastic modulus of PDMS 10:1 is 2.84 MPa and standard 

derivation is 0.72 MPa. From SPSS analysis goodness-of-fit tests for normal distribution on the 

95% confidence interval for PDMS 10:1 histogram’s the p value is 0.08, so if p value is greater 

than α level, which is 0.05, and gives normal distribution. 

3.2.3 Macroscopic Test for Determining PDMS 20:1 Elastic Modulus 

For determining the elastic modulus of PDMS 20:1, 31 different samples were tested and 

Table 7 clearly shows compression test results. 
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Table 7 Macroscopic compression tests results for different samples of PDMS 20:1 

Sample 

# 

Diameter 

(mm) 

Length 

(mm) 
Δl Load (g) Area (m2) 

Force 

(N) 

Stress ,σ 

(MPa) 
Strain (ε) d/l 

Elastic Modulus 

(MPa) 

1 3.66 3.12 0.114 50 1.05E-05 0.4905 0.04667 0.03654 1.173076 1.27549 

2 3.7 2.012 0.06 50 1.08E-05 0.4905 0.045618 0.02982 1.83896 1.52976 

3 3.7 2.51 0.14 50 1.08E-05 0.4905 0.045618 0.05577 1.474109 0.817886 

4 3.58 2.06 0.054 50 1.01E-05 0.4905 0.048728 0.02621 1.737864 1.85894 

5 3.73 3.12 0.14 50 1.09E-05 0.4905 0.044888 0.04487 1.195512 1.000362 

6 3.5 2.48 0.098 50 9.62E-06 0.4905 0.050981 0.03951 1.411292 1.29014 

7 2.54 1.984 0.122 50 5.07E-06 0.4905 0.096801 0.06149 1.280241 1.5742 

8 2.5 1.986 0.12 50 4.91E-06 0.4905 0.099923 0.0604 1.258818 1.65374 

9 1.57 1.77 0.162 30 1.94E-06 0.2943 0.15202 0.09153 0.887005 1.66096 

10 1.59 1.77 0.192 30 1.99E-06 0.2943 0.148219 0.10847 0.898308 1.3664 

11 1.59 1.78 0.2 30 1.99E-06 0.2943 0.148219 0.11236 0.893258 1.31916 

12 3.25 3.04 0.15 50 8.30E-06 0.4905 0.05913 0.04934 1.069075 1.19822 

13 3.22 2.6 0.11 50 8.14E-06 0.4905 0.06023 0.04231 1.238461 1.4237 

14 2.52 1.978 0.11 50 4.99E-06 0.4905 0.098344 0.05561 1.274016 1.768401 

15 2.52 1.976 0.11 50 4.99E-06 0.4905 0.098344 0.0557 1.275304 1.76661 

16 1.56 1.81 0.14 30 1.91E-06 0.2943 0.15398 0.07734 0.861875 1.99068 

17 1.58 1.8 0.13 20 1.96E-06 0.1962 0.100067 0.07222 0.87778 1.38555 

18 2.38 1.976 0.116 50 4.45E-06 0.4905 0.110254 0.0587 1.204454 1.87818 

19 2.52 1.996 0.12 50 4.99E-06 0.4905 0.098344 0.06012 1.262525 1.63572 

20 1.35 2.01 0.4 50 1.43E-06 0.4905 0.342674 0.1991 0.671649 1.72194 

21 1.57 1.8 0.094 20 1.94E-06 0.1962 0.101346 0.05222 0.87222 1.94068 

22 2.5 1.956 0.108 50 4.91E-06 0.4905 0.099923 0.0552 1.2781761 1.80973 

23 1.55 1.86 0.132 20 1.89E-06 0.1962 0.103979 0.07097 0.83333 1.46515 

24 1.56 1.77 0.082 20 1.91E-06 0.1962 0.10265 0.04633 0.881356 2.21576 

25 1.53 1.85 0.17 20 1.84E-06 0.1962 0.106715 0.0918919 0.82703 1.16131 
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Table 7 (Continued)  

Sample 

# 

Diameter 

(mm) 

Length 

(mm) 
Δl Load (g) Area (m2) Force (N) 

Stress σ 

(MPa) 
Strain (ε) d/l 

Elastic 

Modulus (MPa) 

26 3.65 2.03 0.06 50 1.05E-05 0.4905 0.046877 0.0295567 1.79803 1.58602 

27 3.65 2.04 0.06 50 1.05E-05 0.4905 0.046877 0.0294118 1.78922 1.59383 

28 3.64 2.02 0.056 50 1.04E-05 0.4905 0.047135 0.0277228 1.802 1.70023 

29 2.41 1.951 0.12 50 4.56E-06 0.4905 0.107526 0.0615069 1.23597 1.7482 

30 1.6 1.83 0.13 20 2.01E-06 0.1962 0.097581 0.0710383 0.87694 1.37365 

31 1.53 1.71 0.116 20 1.84E-06 0.1962 0.106715 0.0678363 0.894794 1.57313 
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Figure 24 Distribution of different PDMS 20:1 samples’ elastic modulus 

 

 

 

 
 

Figure 25 SPSS analyzed result of the elastic modulus of PDMS 20:1 samples 
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Table 8 SPSS analyzed result of the elastic modulus of PDMS 20:1 samples 

 

Number of Valid Data 31 

Number of Missing Data 0 

Mean 1,557,557.56 Pa 

Median 1,5860,18.28 Pa 

Mode 817,883.35051a Pa 

Mean Standard Error 53,919.7336 Pa 

Std. Deviation 300,212.37 

Range 1,397,859.41 Pa 

Minimum 817,883.35 Pa 

Maximum 2,215,742.76 Pa 

a. Multiple modes exist. The smallest value is shown 

 

 

From Table 8 and Figure 25, elastic modulus of PDMS 20:1 is 1.56 MPa and standard 

derivation is 0.3 MPa. From the SPSS analysis goodness-of-fit tests for normal distribution on 

the 95% confidence interval for PDMS 20:1 the histogram’s p value is 0.627, so if p value is 

greater than α level, which is 0.05, it gives normal distribution. 

3.3 Conclusion of Macroscopic Compression Tests for PDMS Elastic Modulus 

The elastic modulus results, based on the macroscopic compression tests, are indicated in 

the Table 9, summarizing experimental results. PDMSs’ elastic modulus is connected to the 

samples’ diameter and the base/agent ratio [2, 24, 36, 37]. Therefore, Figure 26 and Figure 30 

show the relationship between the modulus of PDMS network and its base/agent ratio. The 

Figures 27-29 demonstrate the relationship between the modulus of PDMS samples and samples’ 

diameter. Furthermore, Wang et al. fitting equation, which is 20/n and Boltzmann equation 

fittings are used to describe the linkage between the elastic modulus of the PDMS samples’ and 

the relationship between the diameter and PDMS base curing agent ratio.  



 

47 
 

Table 9 Elastic modulus of PDMS sample’s experimental results 

 Number of 

 Sample 

Average of  

Diameter (mm) 

Elastic Modulus  

(MPa) 

Standard Derivation 

(MPa) 

PDMS 5:1 12 1.7 2,66 0.47 

 19 2.81 3.05 0.48 

 17 3.65 3.26 0.66 

Sum 48 2.68 3.03 0.56 

PDMS 10:1 5 1.71 3.67 0.8 

 13 2.77 2.68 0.48 

 5 3.63 2.4 0.55 

Sum 23 2.73 2.84 0.72 

PDMS 20:1 12 1.65 1.6 0.32 

 8 2.69 1.73 0.1 

 11 3.57 1.39 0.31 

Sum 31 2.51 1.56 0.3 

 

 

Figure 26 Distribution of different PDMS base/agent ratio samples elastic modulus 
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Figure 27 Distribution of diameter between 1 to 2 mm PDMS samples elastic modulus 

 

 

Figure 28 Distribution of diameter between 2 to 3 mm PDMS samples elastic modulus 
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Figure 29 Distribution of diameter between 3 to 4 mm PDMS samples elastic modulus 

 

 

Figure 30 Distribution of different PDMS crosslinking ratio samples elastic modulus 
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 Wang at al. in “Crosslinking Effect on Polydimethylsiloxane Elastic Modulus Measured 

by Custom-built Compression Instrument”, state that the elastic module of PDMS can be 

measured from the following equation:  

E= 20/n                       (21) 

where n is the base curing agent ratio of PDMS [2, 29, 32]. The elastic modulus is significantly 

affected by samples’ diameter and its base/agent ratio. In these experiments, elastic modulus 

varies as a result of different diameters and different base/agent ratio. Therefore, we tested a 

larger set of samples, which resulted in a much larger range of the measured elastic modulus. As 

a result, the Wang et al. fit is not adequately representing the newly collected data. Thus, an 

improved fit is proposed. However, softer PDMS samples with lower amount of crosslinking 

were not tested in this work because they are much more compliant and tacky, thus measuring of 

these softer samples justify a separate study. The alternative way to present the collected data is 

in terms of the amount of the crosslinker, or in terms of the crosslinking percentage. For this 

reason, the Boltzmann equation was used to fit the sigmoid curve to the data in Figure 30 plots, 

the same data as in Figure 26, but as a function of crosslinking.  

      E = E0 +
a

1+e
N0−N

b

             (22) 

where E is the average elastic modulus in Pa of PDMS polymer at crosslinking percent of N. E0  

is the minimum value of elastic modulus in the curve. “a” is the maximum minus the minimum 

value of average elastic modulus in the curve. N0 is the crosslinking percentage in the halfway 

between the highest and lowest value of elastic modulus. “b” is constant value related to the 

slope of the curve. For the data of the compression test: a = 1,470,769 Pa, E0= 1,557,557 Pa, N0= 

0.0784, and b = 0.012. From SAP analyze Student’s t-tests for PDMS samples distribution on 
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95% confidence interval for Boltzmann equation’s p value is 0.84, so if p value is greater than α 

level which is 0.05, it is strongly similar with PDMS samples. 

3.4 PDMS Viscoelasticity Experimental Test Results 

 The PDMS samples prepared for viscoelasticity measurements were similar to the ones 

described in Section 3.2. One vertical electronic indicator gauge can be enough to make simple 

viscoelasticity measurement for the PDMS samples. First of all, sample diameter and length can 

be measured by electronic indicator or digital displacement gauge. When determining the 

diameter, both stress and cross-sectional areas are found. Chapter 1 mentions how viscoelasticity 

can be found theoretically, which represents fundamental formulas and figures for 

viscoelasticity. In this section, two elements model (Kelvin-Voigt) and three elements model or 

the Zener model (standard linear solid model) were applied to PDMS samples.  

3.4.1 The Kelvin–Voigt Model 

 Kelvin-Voigt is one of the basic viscoelasticity two element model systems. There are a 

spring and one dashpot in the system (Figure 31). 

 

Figure 31 Schematic representation of the Kelvin–Voigt model. Released into public domain by 

Pekaje, 2007 [44] 

 

 In the experiment, force was applied to load the PDMS samples. In the Kelvin-Voigt 

model, the spring will want to stretch immediately, but is held back by the dash pot, which 

cannot react immediately. All the stress is thus initially taken up by the dash pot. There is no 
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stress in the spring because if there was there would have to be at least some strain. During the 

unloading part, the spring will want to contract, but again the dash pot will hold it back. 

However, the spring will eventually pull the dash pot back to its original zero position, given 

time. We expect full recovery [43]. PDMS is one of the cross-linked polymers, so the Kelvin-

Voigt model can be used for the PDMS samples. Figure 32 demonstrates how strain and stress 

change with time under constant stress in the Kelvin-Voigt model [9, 43]. 

 

 

Figure 32 Applied stress and induced strain as function of time over a short period for the 

Kelvin-Voigt model. Adapted from [43]. 

 

The stress of a function of time can be expressed as: 

σ (t) = E ε(t) + η 
𝑑Ɛ(𝑡)

𝑑𝑥
                          (23) 

σ = 
𝐹

𝐴
 ;  F = mg ;  A = 

𝜋𝑑2

4
                 (24) 
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where E is the linear spring of the stiffness, t is the time, η is the viscosity of the dashpot, ε is the 

strain and also σ denotes the applied stress. F is the applied force on the material and A is the 

cross-sectional area of the sample. In this experiment, F does not change during the experiment 

and A can be accepted as a constant during the experiment [9-12, 43]. Hence, σ has a constant 

value. 

 ε (t) =  
η

𝐸

𝑑Ɛ(𝑡)

𝑑𝑥
 – 

σ

E
          (25) 

This equation is a first order non-homogeneous ordinary differential equation and the initial 

condition is ε (0) = 0, so the equation can be solved: 

ε (t) = 
σ

E
(1 − 𝑒

−𝐸𝑡

𝜂 )        (26) 

This experiment is comprised of the two parts, which are loading and unloading. In the 

loading part σ is constant with the known value. On the other hand, the unloading part of σ is 

zero, so the equation is separated in two parts [9, 10, 43].  

For the loading part the equation is equal: 

ε (t) = 
𝜎0

E
(1 − 𝑒

−𝐸𝑡

𝜂 )        (27) 

Therefore, in the limit when (which will happen after an infinite amount of time!), the 

spring will carry all the stress and thus the maximum strain is  
𝜎0

E
 , so E can be found using the 

experimental result [43].  

E = 
Ɛ(𝑡1)

𝜎0
        (28) 

where t1 represents the end of the loading and the beginning of the unloading time.  

For the unloading (σ =0) equation is equal: 

ε (t) =  ε(t1)  𝑒
−𝐸(𝑡−𝑡1)

𝜂         (29) 
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Now, t, t1, E and ε(t) are known so, η can be easily found using the experimental output, or η can 

be also found with using the loading equation:  

lim
t→0+

ε (t) = ⁡
𝜎0

E
(1 − 𝑒

−𝐸𝑡

𝜂 )        (30) 

ε1 - ε0 = 
σ0

E
(1 − e

−E(t−0)

η )       (31) 

Finally, all the unknowns can be found. 

3.4.1.1 Comparing the Kelvin–Voigt Model with Experimental Results  

For determining the viscosity of PDMS 5:1, 8 different samples were tested and Table 10 

lists the compression test results. 

Table 10 Macroscopic compression tests results for different samples of PDMS 5:1 

 E (Pa) ƞ (Pa·s) Diameter (mm) Load (g) 

1 682,944 111,952 3.78 100 

2 746,347 145,987 3.7 100 

3 670,990 82,743 3.68 100 

4 615,414 45,184 3.64 100 

5 576,159 56,013 3.66 100 

6 919,335 51,693 2.58 100 

7 104,3514 356,591 2.62 100 

8 101,3778 230,671 2.62 100 

Avg. 783,560 135,104     
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Figure 33 Comparison of PDMS 5:1 experimental results with the Kelvin - Voigt model for 

different samples. R2 for these samples are (a) 0.87, (b) 0.91, and (c) 0.93 
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For determining the viscosity of PDMS 10:1, 10 different samples were tested and Table 

11 indicates the compression test results. 

Table 11 Macroscopic compression tests results for different samples of PDMS 10:1 

 E (Pa) ƞ (Pa·s) Diameter (mm) Load (g) 

1 686,244 60,091 3.67 100 

2 553,398 75,347 3.75 100 

3 553,398 75,347 3.69 100 

4 521,211 132,571 3.69 100 

5 604,674 32,571 3.69 100 

6 584,258 134,259 3.59 100 

7 584,258 134,259 2.84 100 

8 767,853 134,259 2.84 100 

9 767,853 134,259 2.89 100 

10 874,422 134,259 2.88 100 

Avg. 649,757 104,722     

 

 

Figure 34 Comparison of PDMS 10:1 experimental results with the Kelvin - Voigt model for 

different samples. R2 for these samples are (a) 0.82, (b) 0.91, and (c) 0.93 
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Figure 34 (Continued) 

 

For determining the viscosity of PDMS 20:1, 10 different samples were tested and Table 

12 indicates the compression test results.  
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Table 12 Macroscopic compression tests results for different samples of PDMS 20:1 

 E (Pa) ƞ (Pa·s) Diameter (mm) Load (g) 

1 563,631 71,903 3.46 50 

2 543,659 71,903 3.56 50 

3 513,143 71,903 3.46 50 

4 513,143 71,903 3.46 50 

5 436,701 70,580 3.56 50 

6 436,701 70,580 3.48 50 

7 403,383 75,189 3.49 50 

8 541,476 110,808 3.48 50 

9 638,305 71,903 2.2 50 

10 770,478 71,903 1.92 50 

Avg. 536,062 75,857     

 

 

Figure 35 Comparison of PDMS 20:1 experimental results with the Kelvin - Voigt model for 

different samples. R2 for these samples are (a) 0.84, (b) 0.92, and (c) 0.94 
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Figure 35 (Continued) 
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3.4.2 The Standard Linear Solid Model 

The standard linear solid (SLS) model is one of the fundamental viscoelasticity three 

elements or the Zener model system. It is more complicated, accurate and realistic model than 

the Maxwell and the Kelvin-Voigt models. In contrast to the Maxwell and Kelvin–Voigt models, 

the SLS is slightly more complex, involving elements both in series and in parallel. Springs, 

which represent the elastic component of a viscoelastic material [43]. There are two springs and 

one dashpot in the system (Figure 36).  

 

Figure 36 The standard linear solid model. Released into public domain by Pekaje, 2007 [45] 

 

 The SLS model, as expected, simplifies the recovery response of the Kelvin-Voight unit 

of the model. The full response is shown in the Figure 37. This seems to be fairly close to the 

response of a real material, although there is no permanent strain left [43]. 
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Figure 37 Applied stress and induced strain as functions of time over a short period for the SLS 

model. Adapted from [43]. 

 

𝜎 +
𝜂

𝐸2

𝜕𝜎

𝜕𝑡
= 𝐸1𝜀(𝑡) +

𝜂(𝐸1+𝐸2)

𝐸2

𝑑𝜀

𝑑𝑡
       (32) 

In this project, we can accept that the stress is applied immediately and it is constant so,   

 
𝜕𝜎

𝜕𝑡
= 0 

σ (t) = 
𝐹

𝐴
 ;  F= mg ;  A = 

𝜋𝑑2

4
        (33) 

where E1 and E2 are linear springs stiffness, t is time, η is viscosity of the dashpot, ε is strain and 

also σ denotes applied stress, proportionality F is the applied force  of the material and A is 

cross-sectional area of the sample. In this experiment, F does not change during the experiment 

and A can be accepted as constant during the experiment [9-12, 43]. Hence, σ has a constant 

value. 

𝜎 = 𝐸1𝜀(𝑡) +
𝜂(𝐸1+𝐸2)

𝐸2

𝑑𝜀

𝑑𝑡
       (34) 

For the loading part σ≠0 and σ has a constant value.     
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lim
t→0+

ε′ (t) = ⁡
𝜎𝐸2

𝜂(𝐸1+𝐸2)
             (35) 

𝜀1−𝜀0

𝑡1−𝑡0
=⁡

𝜎𝐸2

𝜂(𝐸1+𝐸2)
       (36) 

η can be rewritten using E1, E2, σ as: 

𝐸1𝜀(𝑡) +
𝜂(𝐸1+𝐸2)

𝐸2

𝑑𝜀

𝑑𝑡
− 𝜎 = 0        (37) 

This differential equation in the form Ax + Bx′+C =0. Where A = E1 ; B = 
𝜂(𝐸1+𝐸2)

𝐸2
 ;  

C= -σ ; and x = 𝜀(𝑡). The solution to this kind of equation: x (t) = 𝐶1𝑒
𝑟𝑡 + 𝐶2𝑒

−𝑟𝑡. Where  

r =⁡
−𝐵±√𝐵2−4𝐴𝐶

2𝐴
 and, Ɛ (0) = 0 so, C1 = -C2; 

Ɛ(t) ⁡= 𝐶1(𝑒
𝑟𝑡 − 𝑒−𝑟𝑡)         (38) 

C1 represents the constant in equation 38. Therefore, in the limit on the loading part when (which 

will happen after an infinite amount of time!), the E1 spring will carry all the stress and thus the 

maximum strain is  
σ0

E1
 , so E1 can be found using the experimental result [43].  

E1 = 
Ɛ(𝑡1)

𝜎0
        (39) 

where t1 represents the end of the loading and the beginning of the unloading time. Now we 

don’t know C1, E2 and η 

For, the unloading (σ = 0) the equation is equal: 

𝐸1𝜀(𝑡) +
𝜂(𝐸1+𝐸2)

𝐸2

𝑑𝜀

𝑑𝑡
= 0       (40) 

−E1E2

η(E1+E2)
dt =

∂Ɛ(t)

Ɛ(t)
       (41) 

Ɛ(𝑡) = C2e
(

−E1E2
η(E1+E2)

)(t−t1)
       (42) 
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If t = t1; C2 = Ɛ (t1)  

Ɛ(𝑡) = Ɛ(t1)e
(

−E1E2
η(E1+E2)

)(t−t1)
       (43) 

C1, E2 and η are still unknown. Hence, if PDMS samples’ viscoelastic behavior were to be 

modeled using the Zener model, the macroscopic compression test does not satisfy the model 

conditions, because more equations are needs to solve for the unknown values.  
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CHAPTER 4: SUMMARY AND FUTURE WORK 
 

The main purpose of this thesis is using simple, fundamental and cheapest method for 

obtaining mechanical properties of soft materials. In this research, the relationship between 

Polydimethylsiloxane (PDMS) elastic modulus and the base/agent ratio is studied and also 

different viscoelasticity models are compared with experimental results. 

The first chapter reviewed fundamental mechanical properties of soft material and 

described PDMS physical and chemical properties. The second chapter reported different 

scholar’s research of the synthesis routes and properties of PDMS and related composite polymer 

materials. 

Chapter three describes how most of the challenges have been overcome in this research. 

Reliable and sensitive macroscopic compression test equipment was created. Preloading method 

was applied for the macroscopic compression test to develop full contact with the sample. In 

sections 3.2 and 3.3, a range of PDMS samples with different base/agent ratios were tested with 

the macroscopic compression test. The elastic modulus of PDMS 5:1 is 3.03 MPa and its 

standard derivation is 0.56 MPa. The elastic modulus of PDMS 10:1 is 2.84 MPa and its standard 

derivation is 0.72 MPa. The elastic modulus of PDMS 20:1 is 1.56 MPa and its standard 

derivation is 0.3 MPa. 

In this research, many samples are tested for determining to elastic modulus of PDMS. 

Experimental results include a large number of samples. When the same diameter (2.5 mm) and 

length (2.5 mm) samples are selected from two different Petri dishes, they gave totally different 

data. Table 13 shows compression test result for PDMS 10:1. 
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Table 13 PDMS 10:1 Elastic modulus on different petri dish 

PDMS 10:1 Petri Dish 1 (MPa) 
Petri Dish 2 

(MPa) 

Sample 1 2.8 3.2 

Sample 2 2.7 3.7 

Sample 3 3.1 2.9 

Sample 4 2.6 4.5 

Sample 5 2.7 2.8 

Average 2.78 3.42 

 

When the standard pen spring (221 N/m) was tested with the electronic gauge, it gave 

different results. Hence, it is possible that the gauge measurements are not reliable. Figure 38 and 

Table 14 show pen spring compression test results.  

 

Figure 38 Standard pen spring compression test results 
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Table 14 Slopes of the spring compression test results 

Test 1 0.033 

Test 2 0.031 

Test 3 0.031 

Test 4 0.031 

Test 5 0.033 

Test 6 0.0326 

Test 7 0.0306 

Test 8 0.032 

Test 9 0.033 

Test 10 0.0304 

 

Hence, it is shown that researcher had issues with both PDMS sample preparation and 

electronic displacement gauge. For the future work, researcher can prepare new samples and one 

can use more accurate and frictionless electronic gauge for determining the PDMS mechanical 

properties. Furthermore, different base/curing agent of the PDMS samples need to be tested with 

the compression method to obtain more accurate mechanical properties. 

In the section 3.4 PDMS experimental test results are compared with the two elements 

viscoelasticity model. A real material does not relax with a single relaxation time. Molecular 

segments of varying length contribute to the relaxation, with the simpler and shorter segments 

relaxing much more quickly than the longer ones. This leads to a distribution of relaxation times, 

which in turn produces a relaxation spread over a much longer time than can be modeled 

accurately with a single relaxation time [9, 10]. When the researcher considers it necessary to 

incorporate this effect, the Zener model can have as many spring-dashpot elements as are needed 

to approximate the distribution satisfactorily [10]. In the future, numerical solution methods, or 

software programs, such as Ansys, can help to determine more accurate and realistic viscoelastic 

models and viscoelastic properties of PDMS. 
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